A Python package for efficient multi-temporal image co-registration 🚀
GitHub: https://github.com/IPL-UV/satalign 🌐
PyPI: https://pypi.org/project/satalign/ 🛠️
Overview 📊
Satalign is a Python package designed for efficient multi-temporal image co-registration. It enables aligning temporal data cubes with reference images using advanced techniques such as Phase Cross-Correlation (PCC), Enhanced Cross-Correlation (ECC), and Local Geometric Matching (LGM). This package facilitates the manipulation and processing of large volumes of Earth observation data efficiently.
Key features ✨
- Advanced alignment algorithms: Leverages ECC, PCC, and LGM to accurately align multi-temporal images. 🔍
- Efficient data cube management: Processes large data cubes with memory and processing optimizations. 🧩
- Support for local feature models: Utilizes models like SuperPoint, SIFT, and more for keypoint matching. 🖥️
- Parallelization: Executes alignment processes across multiple cores for faster processing. 🚀
Installation ⚙️
Install the latest version from PyPI:
pip install satalign
PCC
module, you need to install additional dependencies:
pip install satalign[pcc]
pip install scikit-image
LGM
module, you need to install additional dependencies:
pip install satalign[deep]
How to use 🛠️
Align an ee.ImageCollection with satalign.pcc.PCC
🌍
Load libraries
import ee
import fastcubo
import satalign
import satalign.pcc
import matplotlib.pyplot as plt
from IPython.display import Image, display
Auth and Init GEE
# Initialize depending on the environment
ee.Authenticate()
ee.Initialize(opt_url="https://earthengine-highvolume.googleapis.com") # project = "name"
Dataset
# Download image collection
table = fastcubo.query_getPixels_imagecollection(
point=(-75.71260, -14.18835),
collection="COPERNICUS/S2_HARMONIZED",
bands=["B2", "B3", "B4", "B8"],
data_range=["2023-12-01", "2023-12-31"],
edge_size=256,
resolution=10,
)
fastcubo.getPixels(table, nworkers=4, output_path="output")
Align dataset
# Create a data cube and select images if desired
s2_datacube = satalign.utils.create_array("output", "datacube.pickle")
# Define reference image
reference_image = s2_datacube.sel(time=s2_datacube.time > "2022-08-03").mean("time")
# Initialize and run PCC model
pcc_model = satalign.pcc.PCC(
datacube=s2_datacube,
reference=reference_image,
channel="mean",
crop_center=128,
num_threads=2,
)
# Run the alignment
aligned_cube, warp_matrices = pcc_model.run_multicore()
# Display the warped cube
warp_df = satalign.utils.warp2df(warp_matrices, s2_datacube.time.values)
satalign.utils.plot_s2_scatter(warp_df)
plt.show()
Graphics
# Display profiles
satalign.utils.plot_profile(
warped_cube=aligned_cube.values,
raw_cube=s2_datacube.values,
x_axis=3,
rgb_band=[3, 2, 1],
intensity_factor=1/3000,
)
plt.show()
# Create PNGs and GIF
# Note: The following part requires a Linux environment
# !apt-get install imagemagick
gifspath = satalign.utils.plot_animation1(
warped_cube=aligned_cube[0:50].values,
raw_cube=s2_datacube[0:50].values,
dates=s2_datacube.time[0:50].values,
rgb_band=[3, 2, 1],
intensity_factor=1/3000,
png_output_folder="./output_png",
gif_delay=20,
gif_output_file="./animation1.gif",
)
display(Image(filename='animation1.gif'))
Here's an addition to clarify that datacube
and reference_image
have already been defined:
Align an Image Collection with satalign.eec.ECC
📚
import satalign.ecc
# Initialize the ECC model
ecc_model = satalign.ecc.ECC(
datacube=s2_datacube,
reference=reference_image,
gauss_kernel_size=5,
)
# Run the alignment
aligned_cube, warp_matrices = ecc_model.run()
Align using Local Features with satalign.lgm.LGM
🧮
Here's the updated version with a note about using floating-point values or scaling:
import satalign.lgm
# Initialize the LGM model
lgm_model = satalign.lgm.LGM(
datacube=datacube / 10_000,
reference=reference_image / 10_000,
feature_model="superpoint",
matcher_model="lightglue",
)
# Run the alignment
aligned_cube, warp_matrices = lgm_model.run()
In this document, we presented three different examples of how to use SatAlign with PCC, ECC, and LGM for multi-temporal image co-registration. Each example shows how to download an image collection from Google Earth Engine, create a data cube, and align the images using one of the three methods provided by the SatAlign package.