Skip to content

Algorithm Walk-Through

This notebook will walkthrough the preprocessing steps as well as the ML algorithm training procedure used for the multi-dimensional, multi-output data.

Experiment Overview

Code

Packages

import sys
sys.path.insert(0, "/media/disk/erc/papers/2019_ML_OCN/ml4ocean/src")

# Standard packages
import numpy as np
import pandas as pd

# Datasets
from data.make_dataset import DataLoader, load_standard_data, load_high_dim_data, load_labels

# Features
from features.build_features import times_2_cycles, geo_2_cartesian, get_geodataframe, CycleTransform, GeoCartTransform
from features.pca_features import transform_all, transform_individual
from features.analysis import get_stats
from sklearn.preprocessing import StandardScaler
from data.make_dataset import ValidationFloats

# ML Models
from sklearn.model_selection import train_test_split
from models.baseline import train_rf_model
import statsmodels.api as smi

# Visualization
from visualization.visualize import plot_mo_stats, plot_geolocations, get_depth_labels
from sklearn.inspection import permutation_importance
import matplotlib.pyplot as plt
plt.style.use('seaborn-poster')

%load_ext autoreload
%autoreload 2
---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
<ipython-input-1-cfd0029a69eb> in <module>
      7 
      8 # Datasets
----> 9 from data.make_dataset import DataLoader, load_standard_data, load_high_dim_data, load_labels
     10 
     11 # Features

/media/disk/erc/papers/2019_ML_OCN/ml4ocean/src/data/make_dataset.py in <module>
      3 import numpy as np
      4 from typing import Tuple, Optional, List
----> 5 from visualization.visualize import get_depth_labels
      6 
      7 DATA_PATH = "/home/emmanuel/projects/2020_ml_ocn/data/RAW/CONTROL/"

/media/disk/erc/papers/2019_ML_OCN/ml4ocean/src/visualization/visualize.py in <module>
      1 from typing import Optional, List
----> 2 import geopandas as gpd
      3 import pandas as pd
      4 import numpy as np
      5 import matplotlib.colors as colors

ModuleNotFoundError: No module named 'geopandas'


1 Load Data

1.1 Core Data

In this step, we will load the standard data. This includes the following variables:

  • SLA
  • PAR
  • RHO WN 412
  • RHO WN 443
  • RHO WN 490
  • RHO WN 555
  • RHO WN 670
  • MLD
  • Lat
  • Lon
  • DOY
X_core = load_standard_data('NA', training=True)

# Testing Data
X_core_te = load_standard_data('NA', training=False)


X_core_te = X_core_te.iloc[:, 2:]

X_core.shape, X_core_te.shape
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-2-e3b9a45e5e2d> in <module>
----> 1 X_core = load_standard_data('NA', training=True)
      2 
      3 # Testing Data
      4 X_core_te = load_standard_data('NA', training=False)
      5 

NameError: name 'load_standard_data' is not defined

1.2 High Dimensional Data

In this section, we will extract the high dimensional datasets. They include:

  • Temperature
  • Density
  • Salinity
  • Spiciness
X_temp, X_dens, X_sal, X_spicy = load_high_dim_data('NA', training=True)

# add prefix (Training/Validation)
X_temp = X_temp.add_prefix('temp_')
X_dens = X_dens.add_prefix('dens_')
X_sal = X_sal.add_prefix('sal_')
X_spicy = X_spicy.add_prefix('spice_')

# 
X_temp_te, X_dens_te, X_sal_te, X_spicy_te = load_high_dim_data('NA', training=False)


# Subset
X_temp_te = X_temp_te.iloc[:, 2:] 
X_dens_te = X_dens_te.iloc[:, 2:] 
X_sal_te= X_sal_te.iloc[:, 2:]
X_spicy_te = X_spicy_te.iloc[:, 2:]

# add prefix (Test)
X_temp_te = X_temp_te.add_prefix('temp_')
X_dens_te = X_dens_te.add_prefix('dens_')
X_sal_te = X_sal_te.add_prefix('sal_')
X_spicy_te = X_spicy_te.add_prefix('spice_')

1.3 - Multi-Output Data

We load the multioutput regression labels.

y = load_labels('NA', training=True)

yte = load_labels('NA', training=False)

yte = yte.iloc[:, 2:]

1.4 - Concatentate Data

# Training Data
Xtr = pd.concat([
    X_core, 
    X_temp, 
    X_dens, 
    X_sal, 
    X_spicy
], axis=1)



# Testing Data
Xte = pd.concat([
    X_core_te, 
    X_temp_te, 
    X_dens_te, 
    X_sal_te, 
    X_spicy_te
], axis=1)
Xtr.shape, Xte.shape
((2860, 1115), (162, 1115))


4 - Post-Split Transformations

  1. PCA Transform High Dimensional Variables

In this step, we do a PCA transformation on the concatenation for the high dimensional variables temp, sal, dens, and spicy. We will reduce the dimensionality to about 10 features.

  1. Normalize Core Variables

We will use a standard scaler to make the core variables with a mean of 0 and standard deviation of 1. The ML algorithms tend to perform better with this type of standardization.

  1. Coordinate Transformation

In this step, we will do a simple coordinate transformation of the lat,lon variables from geospatial to cartesian coordinates. This will increase the dimensionality of our dataset from 11 dimensions to 12 dimensions.

  1. Time Transformation

In this step, we will transform the doy coordinates to cycles of sines and cosines. This will increase the dimensionality of our data from from 12 to 13.

from sklearn.compose import ColumnTransformer
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.decomposition import PCA
# new columns columns
temp_columns = X_temp.columns.values
dens_columns = X_dens.columns.values
sal_columns = X_sal.columns.values
spicy_columns = X_spicy.columns.values
core_columns = ['sla', "PAR","RHO_WN_412","RHO_WN_443","RHO_WN_490","RHO_WN_555","RHO_WN_670","MLD"]
time_columns = ['doy']
loc_columns = ['lat', 'lon']

n_components = 5
times = ['doy']

new_columns = [
    *["doy_cos", "doy_sin"], 
    *['x', 'y', 'z',],
    *[f"temperature_pc{icomponent+1}" for icomponent in range(n_components)],
    *[f"density_pc{icomponent+1}" for icomponent in range(n_components)],
    *[f"salinity_pc{icomponent+1}" for icomponent in range(n_components)],
    *[f"spicy_pc{icomponent+1}" for icomponent in range(n_components)],
    *core_columns, 
]
seed = 123

# define transfomer
X_transformer = ColumnTransformer(
    [   ("time", CycleTransform(times), time_columns),
        ("space", GeoCartTransform(), loc_columns),
        ('temp', PCA(n_components=n_components, random_state=seed), temp_columns),
        ('dens', PCA(n_components=n_components, random_state=seed), dens_columns),
        ('sal', PCA(n_components=n_components, random_state=seed), sal_columns),
        ('spice', PCA(n_components=n_components, random_state=seed), spicy_columns),
#         ('standard', StandardScaler(with_mean=True, with_std=True), core_columns),
     ],  
    remainder='passthrough'
)
# fit transform to data
X_transformer.fit(Xtr)

# transform data
Xtrain = X_transformer.fit_transform(Xtr)
Xtest = X_transformer.transform(Xte)

# # X scaler
# X_scaler = StandardScaler(with_mean=True, with_std=True)
# Xtrain = X_scaler.fit_transform(Xtrain)
# Xtest = X_scaler.transform(Xtest)
Xtrain.shape, Xtest.shape
((2860, 33), (162, 33))
SAVE_PATH = "/media/disk/erc/papers/2019_ML_OCN/ml4ocean/reports/figures/"
SAVE_PATH = "/home/emmanuel/figures/ml4ocn/"
save_name = 'na'
# y_ticks = np.arange(0, len(feature_names))
plt.style.use(['seaborn-talk'])
fig, ax = plt.subplots(figsize=(7,5))
plt.plot(X_transformer.named_transformers_['temp'].explained_variance_ratio_[:25].cumsum(), linewidth=4, label='Temperature')
plt.plot(X_transformer.named_transformers_['dens'].explained_variance_ratio_[:25].cumsum(), linewidth=4, label='Density')
plt.plot(X_transformer.named_transformers_['sal'].explained_variance_ratio_[:25].cumsum(), linewidth=4, label='Salinity')
plt.plot(X_transformer.named_transformers_['spice'].explained_variance_ratio_[:25].cumsum(), linewidth=4, label='Spiciness')
# ax.set_title("Random Forest Feature Importances (MDI)")
ax.tick_params(axis="both", which="major", labelsize=20)
ax.tick_params(axis="both", which="minor", labelsize=20)
ax.grid(alpha=0.6, color='gray', zorder=0)
ax.set_ylim([0.8, 1.01])
plt.legend(fontsize=20, loc='lower right')
plt.tight_layout()
plt.show()
fig.savefig(SAVE_PATH + f"evar_{save_name}.png")

2.3 - Output Log Transformation

The distribution of the outputs are skewed because there is a lot more variability in the upper depths than the lower depths. Because the distribution of the outputs are fairly skewed, we propose to do a log transformation to make them normally distributed.

ytrain = np.log(y)
ytest = np.log(yte)

ytrain.shape, ytest.shape
((2860, 276), (162, 276))


3 - Train,Test Split

We split the data into 80% training and 20% training.

Note: because the dataset we are dealing with is only ~3,000 data points, we will do some bootstrap techniques in the full experiment to see how well we do with different subsamples of data.

Xtrain, Xvalid, ytrain, yvalid =  train_test_split(
        Xtrain, ytrain,
        train_size=.8, random_state=1
    )
X_transformer = StandardScaler(with_mean=True, with_std=True)

# fit transform to data
X_transformer.fit(Xtrain)

# transform data
Xtrain = X_transformer.fit_transform(Xtrain)
Xvalid = X_transformer.transform(Xvalid)
Xtest = X_transformer.transform(Xtest)

4.3 - Normalize Outputs

We will use the same standardization as shown above.

output_transformer = StandardScaler(with_mean=True, with_std=False)

ytrain = output_transformer.fit_transform(ytrain)
yvalid = output_transformer.fit_transform(yvalid)

ytest = output_transformer.transform(ytest)


5 - Train ML Model

from models.baseline import train_glm_model, train_gp_model, train_mlp_model, train_lr_model, train_mo_rf_model

5.1 - Linear Regression

model = train_lr_model(Xtrain, ytrain)

5.2 - Elastic Net (Cross-Validated)

model = train_gp_model(Xtrain, ytrain, verbose=2)
Training time: 325.695 secs.

5.3 - (2-Layer) MultiPerceptron Model

model = train_mlp_model(Xtrain, ytrain, verbose=1, valid=0.1)
Iteration 1, loss = 0.08259199
Iteration 2, loss = 0.06196244
Iteration 3, loss = 0.05127663
Iteration 4, loss = 0.04515546
Iteration 5, loss = 0.04057150
Iteration 6, loss = 0.03712973
Iteration 7, loss = 0.03477499
Iteration 8, loss = 0.03170803
Iteration 9, loss = 0.02916630
Iteration 10, loss = 0.02799048
Iteration 11, loss = 0.02599108
Iteration 12, loss = 0.02483116
Iteration 13, loss = 0.02389239
Iteration 14, loss = 0.02364000
Iteration 15, loss = 0.02151295
Iteration 16, loss = 0.02091288
Iteration 17, loss = 0.01989072
Iteration 18, loss = 0.01977638
Iteration 19, loss = 0.01826704
Iteration 20, loss = 0.01761360
Iteration 21, loss = 0.01709655
Iteration 22, loss = 0.01649704
Iteration 23, loss = 0.01630976
Iteration 24, loss = 0.01580504
Iteration 25, loss = 0.01569890
Iteration 26, loss = 0.01493390
Iteration 27, loss = 0.01418659
Iteration 28, loss = 0.01392162
Iteration 29, loss = 0.01358546
Iteration 30, loss = 0.01308379
Iteration 31, loss = 0.01287242
Iteration 32, loss = 0.01263431
Iteration 33, loss = 0.01235550
Iteration 34, loss = 0.01203142
Iteration 35, loss = 0.01185004
Iteration 36, loss = 0.01189953
Iteration 37, loss = 0.01165564
Iteration 38, loss = 0.01122221
Iteration 39, loss = 0.01117182
Iteration 40, loss = 0.01107617
Iteration 41, loss = 0.01078522
Iteration 42, loss = 0.01064290
Iteration 43, loss = 0.01065532
Iteration 44, loss = 0.01040591
Iteration 45, loss = 0.00990065
Iteration 46, loss = 0.00971778
Iteration 47, loss = 0.00987233
Iteration 48, loss = 0.00959703
Iteration 49, loss = 0.00939103
Iteration 50, loss = 0.00913538
Iteration 51, loss = 0.00902507
Iteration 52, loss = 0.00905964
Iteration 53, loss = 0.00920260
Iteration 54, loss = 0.00891849
Iteration 55, loss = 0.00862283
Iteration 56, loss = 0.00858086
Iteration 57, loss = 0.00839181
Iteration 58, loss = 0.00833643
Iteration 59, loss = 0.00848349
Iteration 60, loss = 0.00837573
Iteration 61, loss = 0.00813067
Iteration 62, loss = 0.00819205
Iteration 63, loss = 0.00792315
Iteration 64, loss = 0.00805537
Iteration 65, loss = 0.00771208
Iteration 66, loss = 0.00759574
Iteration 67, loss = 0.00748063
Iteration 68, loss = 0.00753782
Iteration 69, loss = 0.00731909
Iteration 70, loss = 0.00744589
Iteration 71, loss = 0.00730989
Iteration 72, loss = 0.00718921
Iteration 73, loss = 0.00696132
Iteration 74, loss = 0.00691535
Iteration 75, loss = 0.00698476
Iteration 76, loss = 0.00684462
Iteration 77, loss = 0.00665523
Iteration 78, loss = 0.00688687
Iteration 79, loss = 0.00698645
Iteration 80, loss = 0.00683245
Iteration 81, loss = 0.00678997
Iteration 82, loss = 0.00685581
Iteration 83, loss = 0.00670313
Iteration 84, loss = 0.00665865
Iteration 85, loss = 0.00641709
Iteration 86, loss = 0.00635330
Iteration 87, loss = 0.00642690
Iteration 88, loss = 0.00646101
Iteration 89, loss = 0.00642675
Iteration 90, loss = 0.00625143
Iteration 91, loss = 0.00618582
Iteration 92, loss = 0.00620553
Iteration 93, loss = 0.00625980
Iteration 94, loss = 0.00615398
Iteration 95, loss = 0.00647017
Iteration 96, loss = 0.00619490
Iteration 97, loss = 0.00596170
Iteration 98, loss = 0.00603269
Iteration 99, loss = 0.00592819
Iteration 100, loss = 0.00603444
Iteration 101, loss = 0.00615011
Iteration 102, loss = 0.00579275
Iteration 103, loss = 0.00568127
Iteration 104, loss = 0.00563711
Iteration 105, loss = 0.00554255
Iteration 106, loss = 0.00555402
Iteration 107, loss = 0.00554548
Iteration 108, loss = 0.00555376
Iteration 109, loss = 0.00546742
Iteration 110, loss = 0.00550522
Iteration 111, loss = 0.00545433
Iteration 112, loss = 0.00541275
Iteration 113, loss = 0.00538645
Iteration 114, loss = 0.00549167
Iteration 115, loss = 0.00552972
Iteration 116, loss = 0.00565934
Iteration 117, loss = 0.00554134
Iteration 118, loss = 0.00535729
Iteration 119, loss = 0.00537669
Iteration 120, loss = 0.00539923
Iteration 121, loss = 0.00544223
Iteration 122, loss = 0.00546966
Iteration 123, loss = 0.00558613
Iteration 124, loss = 0.00560681
Iteration 125, loss = 0.00529592
Iteration 126, loss = 0.00511268
Iteration 127, loss = 0.00514321
Iteration 128, loss = 0.00503528
Iteration 129, loss = 0.00501040
Iteration 130, loss = 0.00506291
Iteration 131, loss = 0.00506620
Iteration 132, loss = 0.00512712
Iteration 133, loss = 0.00513548
Iteration 134, loss = 0.00524527
Iteration 135, loss = 0.00515316
Iteration 136, loss = 0.00502089
Iteration 137, loss = 0.00497205
Iteration 138, loss = 0.00487709
Iteration 139, loss = 0.00487068
Iteration 140, loss = 0.00482505
Iteration 141, loss = 0.00478469
Iteration 142, loss = 0.00475009
Iteration 143, loss = 0.00481105
Iteration 144, loss = 0.00492210
Iteration 145, loss = 0.00491120
Iteration 146, loss = 0.00485862
Iteration 147, loss = 0.00491941
Iteration 148, loss = 0.00481827
Iteration 149, loss = 0.00476859
Iteration 150, loss = 0.00470496
Iteration 151, loss = 0.00464158
Iteration 152, loss = 0.00470730
Iteration 153, loss = 0.00480185
Iteration 154, loss = 0.00473243
Iteration 155, loss = 0.00482609
Iteration 156, loss = 0.00481751
Iteration 157, loss = 0.00471297
Iteration 158, loss = 0.00468560
Iteration 159, loss = 0.00477009
Iteration 160, loss = 0.00488836
Iteration 161, loss = 0.00482640
Iteration 162, loss = 0.00479873
Training loss did not improve more than tol=0.000010 for 10 consecutive epochs. Stopping.
Training time: 24.616 secs.

5.4 - Random Forest Model

rf_model = train_rf_model(Xtrain, ytrain, verbose=2, n_jobs=1, mo_jobs=8)
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
building tree 1 of 100

5.5 - Gaussian Process

model = train_gp_model(Xtrain, ytrain, verbose=1)
Training time: 528.233 secs.


6 - Test ML Model

6.1 - Training Data Results

This is often not reported but it is very good to check how well a model does on the initial training data because we have no entered a validation set. If we find that the training stats are too high and the testing stats are very low then we know that we're either overfitting and/or our model is not generalizing very well.

First we will look at the statistics on average to see what we get.

ypred = model.predict(Xtrain)
min_lim = np.min(np.concatenate((ypred, ytrain)))
max_lim = np.max(np.concatenate((ypred, ytrain)))


plt.scatter(ypred, ytrain)
plt.plot(np.linspace(min_lim, max_lim), np.linspace(min_lim, max_lim), color='black', zorder=3)
plt.xlim([min_lim, max_lim])
plt.ylim([min_lim, max_lim])
(-3.2836916337021815, 4.282232349201212)
stat_mod = smi.OLS(ypred.ravel(), ytrain.ravel())

res = stat_mod.fit()

print(res.summary())
                                 OLS Regression Results                                
=======================================================================================
Dep. Variable:                      y   R-squared (uncentered):                   0.957
Model:                            OLS   Adj. R-squared (uncentered):              0.957
Method:                 Least Squares   F-statistic:                          1.416e+07
Date:                Mon, 27 Jan 2020   Prob (F-statistic):                        0.00
Time:                        12:19:53   Log-Likelihood:                      6.7167e+05
No. Observations:              631488   AIC:                                 -1.343e+06
Df Residuals:                  631487   BIC:                                 -1.343e+06
Df Model:                           1                                                  
Covariance Type:            nonrobust                                                  
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
x1             0.9518      0.000   3762.815      0.000       0.951       0.952
==============================================================================
Omnibus:                   189835.406   Durbin-Watson:                   0.313
Prob(Omnibus):                  0.000   Jarque-Bera (JB):          9389337.239
Skew:                          -0.681   Prob(JB):                         0.00
Kurtosis:                      21.841   Cond. No.                         1.00
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
# each level
each_level = False

stats = get_stats(ypred, ytrain, each_level=each_level)

stats
mae mse rmse r2
0 0.06107 0.007378 0.007378 0.951758

Then we can look at the statistics for each level.

each_level = True

stats_df = get_stats(ypred, ytrain, each_level=each_level)

stats_df.head()
mae mse rmse r2
0 0.095378 0.017321 0.131608 0.971141
1 0.088260 0.014260 0.119415 0.976678
2 0.084835 0.012756 0.112944 0.979512
3 0.085067 0.012643 0.112440 0.979916
4 0.082786 0.011962 0.109371 0.980980
statistic = 'r2'

plt.style.use('seaborn-talk')
plot_mo_stats(stats_df, stat='r2', save_name='train_mlp')
plot_mo_stats(stats_df, stat='rmse', save_name='train_mlp')

6.2 - Testing Data Results

ypred = model.predict(Xtest)
min_lim = np.min(np.concatenate((ypred, ytest)))
max_lim = np.max(np.concatenate((ypred, ytest)))


plt.scatter(ypred, ytest)
plt.plot(np.linspace(min_lim, max_lim), np.linspace(min_lim, max_lim), color='black', zorder=3)
plt.xlim([min_lim, max_lim])
plt.ylim([min_lim, max_lim])
(-1.551942069352794, 2.87846572477131)
stat_mod = smi.OLS(ypred.ravel(), ytest.ravel())

res = stat_mod.fit()

print(res.summary())
                                 OLS Regression Results                                
=======================================================================================
Dep. Variable:                      y   R-squared (uncentered):                   0.331
Model:                            OLS   Adj. R-squared (uncentered):              0.331
Method:                 Least Squares   F-statistic:                          2.210e+04
Date:                Mon, 27 Jan 2020   Prob (F-statistic):                        0.00
Time:                        12:20:01   Log-Likelihood:                         -4766.7
No. Observations:               44712   AIC:                                      9535.
Df Residuals:                   44711   BIC:                                      9544.
Df Model:                           1                                                  
Covariance Type:            nonrobust                                                  
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
x1             0.5448      0.004    148.665      0.000       0.538       0.552
==============================================================================
Omnibus:                     2050.547   Durbin-Watson:                   0.034
Prob(Omnibus):                  0.000   Jarque-Bera (JB):             5794.388
Skew:                           0.209   Prob(JB):                         0.00
Kurtosis:                       4.713   Cond. No.                         1.00
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
each_level = True

stats_df = get_stats(ypred, ytest, each_level=each_level)

stats_df.head()
mae mse rmse r2
0 0.422045 0.281784 0.530833 0.490588
1 0.439044 0.299561 0.547322 0.487759
2 0.443207 0.312055 0.558618 0.490522
3 0.458520 0.327489 0.572267 0.487148
4 0.453541 0.327009 0.571847 0.496453
statistic = 'r2'
plt.style.use('seaborn-talk')
plot_mo_stats(stats_df, stat='r2', save_name='test_mlp')
plot_mo_stats(stats_df, stat='rmse', save_name='test_mlp')

6.3 - Validation Profile

ypred = model.predict(Xtest)
# initialize class
valid_getter = ValidationFloats('na')

# get validation floats
valid_getter.get_validation_floats('na')
[6901486, 3902123]
# get timeseries
y_validation = valid_getter.get_validation_res(ypred, ytest, 0)

y_validation.head()
(162, 2) (162, 276)
n_cycle Depth Predictions Test
0 3.0 0 1.005610 0.887168
1 12.0 0 0.818398 0.703823
2 24.0 0 1.029707 0.919995
3 25.0 0 1.062241 1.697790
4 26.0 0 1.066075 1.673884
model_name = 'mlp'
ifloat = 6901486
SAVE_PATH = "/home/emmanuel/figures/ml4ocn/"


min_lim = y_validation[['Predictions', 'Test']].min().min()
max_lim = y_validation[['Predictions', 'Test']].max().max()

plt.style.use('seaborn-talk')
fig, ax = plt.subplots()
y_validation.plot.scatter(ax=ax, x='Predictions', y='Test', c='n_cycle')
ax.plot(np.linspace(min_lim, max_lim), np.linspace(min_lim, max_lim), color='black', zorder=3)
plt.xlim([min_lim, max_lim])
plt.ylim([min_lim, max_lim])
plt.tight_layout()
plt.legend([r'R$^2$: 0.344', "coeff: 0.6386"], fontsize=20)
plt.savefig(SAVE_PATH + f'valid_m{model_name}_f{ifloat}_t' + '.png')
plt.show()
SAVE_PATH = "/home/emmanuel/figures/ml4ocn/"

min_lim = y_validation[['Predictions', 'Test']].min().min()
max_lim = y_validation[['Predictions', 'Test']].max().max()

plt.style.use('seaborn-talk')
fig, ax = plt.subplots()
y_validation.plot.scatter(ax=ax, x='Predictions', y='Test', c='Depth')
ax.plot(np.linspace(min_lim, max_lim), np.linspace(min_lim, max_lim), color='black', zorder=3)
plt.xlim([min_lim, max_lim])
plt.ylim([min_lim, max_lim])
plt.tight_layout()
plt.legend([r'R$^2$: 0.344', "coeff: 0.6386"], fontsize=20)
plt.savefig(SAVE_PATH + f'valid_m{model_name}_f{ifloat}_d' + '.png')
plt.show()
stat_mod = smi.OLS(y_validation['Predictions'], y_validation['Test'].ravel())

res = stat_mod.fit()

print(res.summary())
                                 OLS Regression Results                                
=======================================================================================
Dep. Variable:            Predictions   R-squared (uncentered):                   0.314
Model:                            OLS   Adj. R-squared (uncentered):              0.314
Method:                 Least Squares   F-statistic:                          1.689e+04
Date:                Mon, 27 Jan 2020   Prob (F-statistic):                        0.00
Time:                        12:20:15   Log-Likelihood:                         -8176.4
No. Observations:               36984   AIC:                                  1.635e+04
Df Residuals:                   36983   BIC:                                  1.636e+04
Df Model:                           1                                                  
Covariance Type:            nonrobust                                                  
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
x1             0.6573      0.005    129.966      0.000       0.647       0.667
==============================================================================
Omnibus:                     5008.458   Durbin-Watson:                   0.619
Prob(Omnibus):                  0.000   Jarque-Bera (JB):            26607.874
Skew:                           0.547   Prob(JB):                         0.00
Kurtosis:                       7.009   Cond. No.                         1.00
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
# each level
each_level = False

stats = get_stats(ypred, ytest, each_level=each_level)

stats
mae mse rmse r2
0 0.239304 0.102378 0.102378 -1.27019
each_level = True

stats_df = get_stats(ypred, ytest, each_level=each_level)

stats_df.head()
mae mse rmse r2
0 0.406305 0.267202 0.516915 0.516951
1 0.426680 0.294181 0.542385 0.496959
2 0.431409 0.302646 0.550133 0.505883
3 0.447864 0.317618 0.563576 0.502607
4 0.448236 0.322170 0.567600 0.503906
statistic = 'r2'
plt.style.use('seaborn-talk')
plot_mo_stats(stats_df, stat='r2', save_name='valid_mlp')
plot_mo_stats(stats_df, stat='rmse', save_name='valid_mlp')


7 - Post Analysis

7.1 - Feature Importance

For some algorithms, we can calculate the feature importance based on the inputs dimensions. This is true for the random forest model.

rf_model.
{'bootstrap': True,
 'ccp_alpha': 0.0,
 'criterion': 'mse',
 'max_depth': None,
 'max_features': 'auto',
 'max_leaf_nodes': None,
 'max_samples': None,
 'min_impurity_decrease': 0.0,
 'min_impurity_split': None,
 'min_samples_leaf': 1,
 'min_samples_split': 2,
 'min_weight_fraction_leaf': 0.0,
 'n_estimators': 1500,
 'n_jobs': -1,
 'oob_score': False,
 'random_state': 123,
 'verbose': 0,
 'warm_start': False}
tree_feature_importances = \
    rf_model.feature_importances_

feature_names = np.asarray(new_columns) #np.concatenate((core_columns.values, np.array(pca_columns)))

assert feature_names.shape[0] == tree_feature_importances.shape[0], "Shapes don't match"

sorted_idx = tree_feature_importances.argsort()
SAVE_PATH = "/media/disk/erc/papers/2019_ML_OCN/ml4ocean/reports/figures/"
save_name = 'na'
y_ticks = np.arange(0, len(feature_names))
plt.style.use(['seaborn-talk'])
fig, ax = plt.subplots(figsize=(10,10))
ax.barh(y_ticks, tree_feature_importances[sorted_idx], zorder=3, height=0.8)
ax.set_yticklabels(feature_names[sorted_idx])
ax.set_yticks(y_ticks)
# ax.set_title("Random Forest Feature Importances (MDI)")
ax.tick_params(axis="both", which="major", labelsize=20)
ax.tick_params(axis="both", which="minor", labelsize=20)
ax.grid(alpha=0.6, color='gray', zorder=0)
plt.tight_layout()
plt.show()
# fig.savefig(SAVE_PATH + f"fi_{save_name}.png")

7.2 - Permutation Plot

perm_result_test = permutation_importance(
    rf_model, 
    Xtest, 
    ytest, 
    n_repeats=10,
    random_state=42, 
    n_jobs=1
)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.7s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.7s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    0.5s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    0.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
sorted_idx = perm_result_test.importances_mean.argsort()
fig, ax = plt.subplots(figsize=(10,10))
plt.style.use(['seaborn-talk'])
ax.boxplot(
    perm_result_test.importances[sorted_idx].T,
    vert=False, 
    labels=feature_names[sorted_idx]
)
ax.set_title("Permutation Importances (Test set)")
fig.tight_layout()
plt.show()
perm_result_train = permutation_importance(
    rf_model, 
    Xtrain, 
    ytrain, 
    n_repeats=10,
    random_state=42, 
    n_jobs=1
)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.9s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.5s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    2.2s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.6s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    2.0s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.4s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.9s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.6s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    2.3s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.7s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.8s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    2.0s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.4s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.4s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.8s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    2.0s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.0s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.8s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    2.0s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.4s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.4s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.8s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.4s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.9s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.4s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    2.1s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.0s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.6s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.0s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.8s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.4s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    2.0s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.4s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.8s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.4s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    2.0s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.4s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.8s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.0s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.9s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.4s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    2.1s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.8s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.3s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.0s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.0s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.0s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.9s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.6s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.0s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.2s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.0s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.6s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.0s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.0s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.6s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.0s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.2s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.2s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.8s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.4s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    2.1s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.5s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.4s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.8s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.3s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    2.0s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.4s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.1s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.7s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.6s
[Parallel(n_jobs=16)]: Done 768 tasks      | elapsed:    1.1s
[Parallel(n_jobs=16)]: Done 1218 tasks      | elapsed:    1.8s
[Parallel(n_jobs=16)]: Done 1500 out of 1500 | elapsed:    2.1s finished
/home/emmanuel/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py:434: FutureWarning: The default value of multioutput (not exposed in score method) will change from 'variance_weighted' to 'uniform_average' in 0.23 to keep consistent with 'metrics.r2_score'. To specify the default value manually and avoid the warning, please either call 'metrics.r2_score' directly or make a custom scorer with 'metrics.make_scorer' (the built-in scorer 'r2' uses multioutput='uniform_average').
  "multioutput='uniform_average').", FutureWarning)
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done  18 tasks      | elapsed:    0.0s
[Parallel(n_jobs=16)]: Done 168 tasks      | elapsed:    0.3s
[Parallel(n_jobs=16)]: Done 418 tasks      | elapsed:    0.7s
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
<ipython-input-38-bd4b09c39570> in <module>
      5     n_repeats=10,
      6     random_state=42,
----> 7     n_jobs=1
      8 )

~/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/inspection/_permutation_importance.py in permutation_importance(estimator, X, y, scoring, n_repeats, n_jobs, random_state)
    116     scores = Parallel(n_jobs=n_jobs)(delayed(_calculate_permutation_scores)(
    117         estimator, X, y, col_idx, random_seed, n_repeats, scorer
--> 118     ) for col_idx in range(X.shape[1]))
    119 
    120     importances = baseline_score - np.array(scores)

~/.conda/envs/ml4ocn/lib/python3.6/site-packages/joblib/parallel.py in __call__(self, iterable)
   1005                 self._iterating = self._original_iterator is not None
   1006 
-> 1007             while self.dispatch_one_batch(iterator):
   1008                 pass
   1009 

~/.conda/envs/ml4ocn/lib/python3.6/site-packages/joblib/parallel.py in dispatch_one_batch(self, iterator)
    833                 return False
    834             else:
--> 835                 self._dispatch(tasks)
    836                 return True
    837 

~/.conda/envs/ml4ocn/lib/python3.6/site-packages/joblib/parallel.py in _dispatch(self, batch)
    752         with self._lock:
    753             job_idx = len(self._jobs)
--> 754             job = self._backend.apply_async(batch, callback=cb)
    755             # A job can complete so quickly than its callback is
    756             # called before we get here, causing self._jobs to

~/.conda/envs/ml4ocn/lib/python3.6/site-packages/joblib/_parallel_backends.py in apply_async(self, func, callback)
    207     def apply_async(self, func, callback=None):
    208         """Schedule a func to be run"""
--> 209         result = ImmediateResult(func)
    210         if callback:
    211             callback(result)

~/.conda/envs/ml4ocn/lib/python3.6/site-packages/joblib/_parallel_backends.py in __init__(self, batch)
    588         # Don't delay the application, to avoid keeping the input
    589         # arguments in memory
--> 590         self.results = batch()
    591 
    592     def get(self):

~/.conda/envs/ml4ocn/lib/python3.6/site-packages/joblib/parallel.py in __call__(self)
    254         with parallel_backend(self._backend, n_jobs=self._n_jobs):
    255             return [func(*args, **kwargs)
--> 256                     for func, args, kwargs in self.items]
    257 
    258     def __len__(self):

~/.conda/envs/ml4ocn/lib/python3.6/site-packages/joblib/parallel.py in <listcomp>(.0)
    254         with parallel_backend(self._backend, n_jobs=self._n_jobs):
    255             return [func(*args, **kwargs)
--> 256                     for func, args, kwargs in self.items]
    257 
    258     def __len__(self):

~/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/inspection/_permutation_importance.py in _calculate_permutation_scores(estimator, X, y, col_idx, random_state, n_repeats, scorer)
     32         else:
     33             X_permuted[:, col_idx] = X_permuted[shuffling_idx, col_idx]
---> 34         feature_score = scorer(estimator, X_permuted, y)
     35         scores[n_round] = feature_score
     36 

~/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/metrics/_scorer.py in _passthrough_scorer(estimator, *args, **kwargs)
    369 def _passthrough_scorer(estimator, *args, **kwargs):
    370     """Function that wraps estimator.score"""
--> 371     return estimator.score(*args, **kwargs)
    372 
    373 

~/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/base.py in score(self, X, y, sample_weight)
    420         from .metrics import r2_score
    421         from .metrics._regression import _check_reg_targets
--> 422         y_pred = self.predict(X)
    423         # XXX: Remove the check in 0.23
    424         y_type, _, _, _ = _check_reg_targets(y, y_pred, None)

~/.conda/envs/ml4ocn/lib/python3.6/site-packages/sklearn/ensemble/_forest.py in predict(self, X)
    780                  **_joblib_parallel_args(require="sharedmem"))(
    781             delayed(_accumulate_prediction)(e.predict, X, [y_hat], lock)
--> 782             for e in self.estimators_)
    783 
    784         y_hat /= len(self.estimators_)

~/.conda/envs/ml4ocn/lib/python3.6/site-packages/joblib/parallel.py in __call__(self, iterable)
   1015 
   1016             with self._backend.retrieval_context():
-> 1017                 self.retrieve()
   1018             # Make sure that we get a last message telling us we are done
   1019             elapsed_time = time.time() - self._start_time

~/.conda/envs/ml4ocn/lib/python3.6/site-packages/joblib/parallel.py in retrieve(self)
    907             try:
    908                 if getattr(self._backend, 'supports_timeout', False):
--> 909                     self._output.extend(job.get(timeout=self.timeout))
    910                 else:
    911                     self._output.extend(job.get())

~/.conda/envs/ml4ocn/lib/python3.6/multiprocessing/pool.py in get(self, timeout)
    636 
    637     def get(self, timeout=None):
--> 638         self.wait(timeout)
    639         if not self.ready():
    640             raise TimeoutError

~/.conda/envs/ml4ocn/lib/python3.6/multiprocessing/pool.py in wait(self, timeout)
    633 
    634     def wait(self, timeout=None):
--> 635         self._event.wait(timeout)
    636 
    637     def get(self, timeout=None):

~/.conda/envs/ml4ocn/lib/python3.6/threading.py in wait(self, timeout)
    549             signaled = self._flag
    550             if not signaled:
--> 551                 signaled = self._cond.wait(timeout)
    552             return signaled
    553 

~/.conda/envs/ml4ocn/lib/python3.6/threading.py in wait(self, timeout)
    293         try:    # restore state no matter what (e.g., KeyboardInterrupt)
    294             if timeout is None:
--> 295                 waiter.acquire()
    296                 gotit = True
    297             else:

KeyboardInterrupt: 
sorted_idx = perm_result_train.importances_mean.argsort()
plt.style.use(['seaborn-talk'])
fig, ax = plt.subplots()
ax.boxplot(
    perm_result_train.importances[sorted_idx].T,
    vert=False, 
    labels=feature_names[sorted_idx]
)
ax.set_title("Permutation Importances (Train set)")
fig.tight_layout()
plt.show()

Subtropical Gyros

Load Data

X_core = load_standard_data('STG', training=True)

# Testing Data
X_core_te = load_standard_data('STG', training=False)


X_core_te = X_core_te.iloc[:, 2:]

X_core.shape, X_core_te.shape
((1353, 11), (133, 11))
X_temp, X_dens, X_sal, X_spicy = load_high_dim_data('STG', training=True)

# add prefix (Training/Validation)
X_temp = X_temp.add_prefix('temp_')
X_dens = X_dens.add_prefix('dens_')
X_sal = X_sal.add_prefix('sal_')
X_spicy = X_spicy.add_prefix('spice_')

# 
X_temp_te, X_dens_te, X_sal_te, X_spicy_te = load_high_dim_data('STG', training=False)


# Subset
X_temp_te = X_temp_te.iloc[:, 2:] 
X_dens_te = X_dens_te.iloc[:, 2:] 
X_sal_te= X_sal_te.iloc[:, 2:]
X_spicy_te = X_spicy_te.iloc[:, 2:]

# add prefix (Test)
X_temp_te = X_temp_te.add_prefix('temp_')
X_dens_te = X_dens_te.add_prefix('dens_')
X_sal_te = X_sal_te.add_prefix('sal_')
X_spicy_te = X_spicy_te.add_prefix('spice_')
y = load_labels('STG', training=True)

yte = load_labels('STG', training=False)

yte = yte.iloc[:, 2:]
# Training Data
Xtr = pd.concat([
    X_core, 
    X_temp, 
    X_dens, 
    X_sal, 
    X_spicy
], axis=1)



# Testing Data
Xte = pd.concat([
    X_core_te, 
    X_temp_te, 
    X_dens_te, 
    X_sal_te, 
    X_spicy_te
], axis=1)

Tre Transformations

# new columns columns
temp_columns = X_temp.columns.values
dens_columns = X_dens.columns.values
sal_columns = X_sal.columns.values
spicy_columns = X_spicy.columns.values
core_columns = ['sla', "PAR","RHO_WN_412","RHO_WN_443","RHO_WN_490","RHO_WN_555","RHO_WN_670","MLD"]
time_columns = ['doy']
loc_columns = ['lat', 'lon']

n_components = 5
times = ['doy']

new_columns = [
    *["doy_cos", "doy_sin"], 
    *['x', 'y', 'z',],
    *[f"temperature_pc{icomponent+1}" for icomponent in range(n_components)],
    *[f"density_pc{icomponent+1}" for icomponent in range(n_components)],
    *[f"salinity_pc{icomponent+1}" for icomponent in range(n_components)],
    *[f"spicy_pc{icomponent+1}" for icomponent in range(n_components)],
    *core_columns, 
]
seed = 123
# define transfomer
X_transformer = ColumnTransformer(
    [   ("time", CycleTransform(times), time_columns),
        ("space", GeoCartTransform(), loc_columns),
        ('temp', PCA(n_components=n_components, random_state=seed), temp_columns),
        ('dens', PCA(n_components=n_components, random_state=seed), dens_columns),
        ('sal', PCA(n_components=n_components, random_state=seed), sal_columns),
        ('spice', PCA(n_components=n_components, random_state=seed), spicy_columns),
#         ('core', StandardScaler(with_mean=True, with_std=True), core_columns)
    ],
    remainder='passthrough'
)
# fit transform to data
X_transformer.fit(Xtr)

# transform data
Xtrain = X_transformer.fit_transform(Xtr)
Xtest = X_transformer.transform(Xte)
ytrain = np.log(y)
ytest = np.log(yte)

ytrain.shape, ytest.shape
((1353, 276), (133, 276))

Train-Test Split

Xtrain, Xvalid, ytrain, yvalid =  train_test_split(
        Xtrain, ytrain,
        train_size=.8, random_state=1
    )

Post Transformations

X_transformer = StandardScaler(with_mean=True, with_std=True)

# fit transform to data
X_transformer.fit(Xtrain)

# transform data
Xtrain = X_transformer.fit_transform(Xtrain)
Xvalid = X_transformer.transform(Xvalid)
Xtest = X_transformer.transform(Xtest)
output_transformer = StandardScaler(with_mean=True, with_std=False)

ytrain = output_transformer.fit_transform(ytrain)
yvalid = output_transformer.fit_transform(yvalid)
ytest = output_transformer.transform(ytest)

Train ML Model

model = train_mlp_model(Xtrain, ytrain, verbose=1, valid=0.1)
Iteration 1, loss = 0.04404014
Iteration 2, loss = 0.04233716
Iteration 3, loss = 0.03999879
Iteration 4, loss = 0.03553489
Iteration 5, loss = 0.02922904
Iteration 6, loss = 0.02270823
Iteration 7, loss = 0.01774804
Iteration 8, loss = 0.01455149
Iteration 9, loss = 0.01275994
Iteration 10, loss = 0.01139479
Iteration 11, loss = 0.01041543
Iteration 12, loss = 0.00956958
Iteration 13, loss = 0.00893924
Iteration 14, loss = 0.00837105
Iteration 15, loss = 0.00784597
Iteration 16, loss = 0.00745897
Iteration 17, loss = 0.00710062
Iteration 18, loss = 0.00689064
Iteration 19, loss = 0.00659195
Iteration 20, loss = 0.00644984
Iteration 21, loss = 0.00620834
Iteration 22, loss = 0.00599103
Iteration 23, loss = 0.00585093
Iteration 24, loss = 0.00571502
Iteration 25, loss = 0.00557472
Iteration 26, loss = 0.00544984
Iteration 27, loss = 0.00532607
Iteration 28, loss = 0.00522278
Iteration 29, loss = 0.00508456
Iteration 30, loss = 0.00503143
Iteration 31, loss = 0.00501642
Iteration 32, loss = 0.00492858
Iteration 33, loss = 0.00483732
Iteration 34, loss = 0.00476257
Iteration 35, loss = 0.00471380
Iteration 36, loss = 0.00463958
Iteration 37, loss = 0.00454218
Iteration 38, loss = 0.00448899
Iteration 39, loss = 0.00441734
Iteration 40, loss = 0.00432583
Iteration 41, loss = 0.00428757
Iteration 42, loss = 0.00424003
Iteration 43, loss = 0.00421163
Iteration 44, loss = 0.00419324
Iteration 45, loss = 0.00413517
Iteration 46, loss = 0.00409957
Iteration 47, loss = 0.00404558
Iteration 48, loss = 0.00408237
Iteration 49, loss = 0.00397557
Iteration 50, loss = 0.00390968
Iteration 51, loss = 0.00390060
Iteration 52, loss = 0.00386618
Iteration 53, loss = 0.00382930
Iteration 54, loss = 0.00378482
Iteration 55, loss = 0.00374815
Iteration 56, loss = 0.00369985
Iteration 57, loss = 0.00370369
Iteration 58, loss = 0.00370657
Iteration 59, loss = 0.00364967
Iteration 60, loss = 0.00361953
Iteration 61, loss = 0.00363740
Iteration 62, loss = 0.00363886
Iteration 63, loss = 0.00364014
Iteration 64, loss = 0.00357380
Iteration 65, loss = 0.00354915
Iteration 66, loss = 0.00354744
Iteration 67, loss = 0.00356916
Iteration 68, loss = 0.00348918
Iteration 69, loss = 0.00345298
Iteration 70, loss = 0.00341895
Iteration 71, loss = 0.00338562
Iteration 72, loss = 0.00337161
Iteration 73, loss = 0.00333775
Iteration 74, loss = 0.00330174
Iteration 75, loss = 0.00328011
Iteration 76, loss = 0.00328366
Iteration 77, loss = 0.00327779
Iteration 78, loss = 0.00324590
Iteration 79, loss = 0.00322532
Iteration 80, loss = 0.00321512
Iteration 81, loss = 0.00322540
Iteration 82, loss = 0.00323972
Iteration 83, loss = 0.00319478
Iteration 84, loss = 0.00318867
Iteration 85, loss = 0.00315817
Iteration 86, loss = 0.00316153
Iteration 87, loss = 0.00317412
Iteration 88, loss = 0.00314881
Iteration 89, loss = 0.00316765
Iteration 90, loss = 0.00323642
Iteration 91, loss = 0.00315456
Iteration 92, loss = 0.00311508
Iteration 93, loss = 0.00310767
Iteration 94, loss = 0.00310070
Iteration 95, loss = 0.00311034
Iteration 96, loss = 0.00306191
Iteration 97, loss = 0.00303219
Iteration 98, loss = 0.00301453
Iteration 99, loss = 0.00300814
Iteration 100, loss = 0.00301214
Iteration 101, loss = 0.00296582
Iteration 102, loss = 0.00295890
Iteration 103, loss = 0.00294944
Iteration 104, loss = 0.00295457
Iteration 105, loss = 0.00295732
Iteration 106, loss = 0.00295811
Iteration 107, loss = 0.00291975
Iteration 108, loss = 0.00291308
Iteration 109, loss = 0.00293052
Iteration 110, loss = 0.00290656
Iteration 111, loss = 0.00291328
Iteration 112, loss = 0.00289352
Iteration 113, loss = 0.00288698
Iteration 114, loss = 0.00285006
Iteration 115, loss = 0.00286369
Iteration 116, loss = 0.00286365
Iteration 117, loss = 0.00285693
Iteration 118, loss = 0.00284021
Iteration 119, loss = 0.00280960
Iteration 120, loss = 0.00282471
Iteration 121, loss = 0.00282692
Iteration 122, loss = 0.00281811
Iteration 123, loss = 0.00280976
Iteration 124, loss = 0.00281109
Iteration 125, loss = 0.00278118
Iteration 126, loss = 0.00277009
Iteration 127, loss = 0.00277372
Iteration 128, loss = 0.00276675
Iteration 129, loss = 0.00273699
Iteration 130, loss = 0.00274575
Iteration 131, loss = 0.00277771
Iteration 132, loss = 0.00277319
Iteration 133, loss = 0.00276945
Iteration 134, loss = 0.00271861
Iteration 135, loss = 0.00270733
Iteration 136, loss = 0.00269192
Iteration 137, loss = 0.00268628
Iteration 138, loss = 0.00267595
Iteration 139, loss = 0.00267008
Iteration 140, loss = 0.00267025
Iteration 141, loss = 0.00266669
Iteration 142, loss = 0.00264064
Iteration 143, loss = 0.00266217
Iteration 144, loss = 0.00264794
Iteration 145, loss = 0.00263791
Iteration 146, loss = 0.00262205
Iteration 147, loss = 0.00261012
Iteration 148, loss = 0.00261269
Iteration 149, loss = 0.00260257
Iteration 150, loss = 0.00261959
Iteration 151, loss = 0.00260983
Iteration 152, loss = 0.00260160
Iteration 153, loss = 0.00259984
Iteration 154, loss = 0.00258859
Iteration 155, loss = 0.00260201
Iteration 156, loss = 0.00259312
Iteration 157, loss = 0.00258840
Iteration 158, loss = 0.00258678
Iteration 159, loss = 0.00257915
Iteration 160, loss = 0.00257172
Iteration 161, loss = 0.00255456
Iteration 162, loss = 0.00255829
Iteration 163, loss = 0.00256354
Iteration 164, loss = 0.00257048
Iteration 165, loss = 0.00256765
Iteration 166, loss = 0.00256455
Iteration 167, loss = 0.00256505
Iteration 168, loss = 0.00255623
Iteration 169, loss = 0.00253190
Iteration 170, loss = 0.00251063
Iteration 171, loss = 0.00250799
Iteration 172, loss = 0.00249209
Iteration 173, loss = 0.00248792
Iteration 174, loss = 0.00246772
Iteration 175, loss = 0.00246227
Iteration 176, loss = 0.00247650
Iteration 177, loss = 0.00247792
Iteration 178, loss = 0.00246150
Iteration 179, loss = 0.00245814
Iteration 180, loss = 0.00246831
Iteration 181, loss = 0.00245703
Iteration 182, loss = 0.00245560
Iteration 183, loss = 0.00244056
Iteration 184, loss = 0.00244849
Iteration 185, loss = 0.00246202
Iteration 186, loss = 0.00246362
Iteration 187, loss = 0.00247775
Iteration 188, loss = 0.00250301
Iteration 189, loss = 0.00253404
Iteration 190, loss = 0.00249942
Iteration 191, loss = 0.00247626
Iteration 192, loss = 0.00243972
Iteration 193, loss = 0.00241549
Iteration 194, loss = 0.00240424
Iteration 195, loss = 0.00240119
Iteration 196, loss = 0.00240227
Iteration 197, loss = 0.00241523
Iteration 198, loss = 0.00242200
Iteration 199, loss = 0.00243402
Iteration 200, loss = 0.00244168
Iteration 201, loss = 0.00244610
Iteration 202, loss = 0.00244003
Iteration 203, loss = 0.00241704
Iteration 204, loss = 0.00238488
Iteration 205, loss = 0.00236594
Iteration 206, loss = 0.00238378
Iteration 207, loss = 0.00239985
Iteration 208, loss = 0.00237313
Iteration 209, loss = 0.00236799
Iteration 210, loss = 0.00235266
Iteration 211, loss = 0.00235649
Iteration 212, loss = 0.00236750
Iteration 213, loss = 0.00237051
Iteration 214, loss = 0.00238517
Iteration 215, loss = 0.00238750
Iteration 216, loss = 0.00237986
Iteration 217, loss = 0.00237983
Iteration 218, loss = 0.00236825
Iteration 219, loss = 0.00236512
Iteration 220, loss = 0.00238062
Iteration 221, loss = 0.00239693
Training loss did not improve more than tol=0.000010 for 10 consecutive epochs. Stopping.
Training time: 7.193 secs.

Test ML Model

ypred = model.predict(Xtest)
# each level
each_level = False

stats = get_stats(ypred, ytest, each_level=each_level)

stats
mae mse rmse r2
0 0.076336 0.011636 0.011636 0.812559
each_level = True

stats_df = get_stats(ypred, ytest, each_level=each_level)

stats_df.head()
mae mse rmse r2
0 0.088556 0.020310 0.142513 0.717452
1 0.081911 0.015445 0.124277 0.762677
2 0.076586 0.011129 0.105496 0.814074
3 0.081023 0.013181 0.114808 0.789395
4 0.073182 0.009919 0.099596 0.820807
statistic = 'r2'
plt.style.use('seaborn-talk')
plot_mo_stats(
    stats_df, 
    stat='r2', 
    save_name='stg_test',
    color='red'
)
plot_mo_stats(stats_df, stat='mae', save_name='stg_test', color='red')
plot_mo_stats(stats_df, stat='mse', save_name='stg_test', color='red')
plot_mo_stats(stats_df, stat='rmse', save_name='stg_test', color='red')

Post Analysis

tree_feature_importances = \
    rf_model.feature_importances_

feature_names = np.asarray(new_columns) #np.concatenate((core_columns.values, np.array(pca_columns)))

assert feature_names.shape[0] == tree_feature_importances.shape[0], "Shapes don't match"

sorted_idx = tree_feature_importances.argsort()
SAVE_PATH = "/media/disk/erc/papers/2019_ML_OCN/ml4ocean/reports/figures/"
save_name = 'stg'
y_ticks = np.arange(0, len(feature_names))
plt.style.use(['seaborn-talk'])
fig, ax = plt.subplots(figsize=(10,10))
ax.barh(y_ticks, tree_feature_importances[sorted_idx], zorder=3, height=0.8, color='red')
ax.set_yticklabels(feature_names[sorted_idx])
ax.set_yticks(y_ticks)
# ax.set_title("Random Forest Feature Importances (MDI)")
ax.tick_params(axis="both", which="major", labelsize=20)
ax.tick_params(axis="both", which="minor", labelsize=20)
ax.grid(alpha=0.6, color='gray', zorder=0)
plt.tight_layout()
plt.show()
fig.savefig(SAVE_PATH + f"fi_{save_name}.png")
depths = 276
first = [*range(1, 250)]
d1 = first[::2]

second = [*range(251,1000)]
d2 = second[::5]
len(d1), len(d2)
(125, 150)
plt.plot(-np.concatenate((d1,d2)))
[<matplotlib.lines.Line2D at 0x7f8ad6785a90>]